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Figure 1: A screenshot of the visualization of the developed agent-based model showing passengers who just alighted from a
train leaving the platform for the stairs in the simulation of the Legarda station of the LRT-2 line inMetroManila, Philippines.

ABSTRACT
While agent-based models (ABM) have been developed for the plan-
ning of rapid transit systems (RTS), we have determined that the
simultaneous modeling of their train operations with passenger
crowd dynamics have not been adequate. We examine the inter-
action between train operations and passenger crowds in an RTS
through an ABM which comprehensively integrates such train and
crowd components, with the RTS of Metro Manila in the Philippines
as a case study. After validating the model using video recordings
of stations and smart card trip data, scenarios were tested on one
of the RTS. It was observed that deploying less than 4 trains results
in a considerable increase in the mean passenger travel time. When
ridership is scaled alongside the 2015-2020 Philippine population
growth rate of 1.63%, projected increases of 0.78% in the mean pas-
senger travel time, 2.16% in the mean total time spent in the system,
4.7% in the mean train load factor, and 0.47% in the time trains stop
at the platforms were observed between 2019 and 2023.
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1 INTRODUCTION
Rapid transit systems (RTS) are a mode of urban transportation,
usually on an exclusive right of way, which carry large volumes
of passengers between designated transit stations [6]. Oftentimes,
transportation planners construct RTS to support the increasing
population density in cities. However, the said increases in popula-
tion density require that the complexities of the RTS associated with
such urban centers evolve as well [19]. [9] underscore the impor-
tance of understanding how passengers use public transport in the
operation and planning for the underlying transportation networks.
Various methods have been devised for and used by transporta-
tion planners to gain valuable insights and plan strategies for the
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management of RTS despite their increasingly complicated nature.
Capturing the complex behavior of such systems is most appropri-
ately done through another simulation modeling paradigm, called
agent-based modeling [3].

In the context of agent-based modeling of rail-based transporta-
tion systems, it is often the case that the trains of the system at
least partly constitute the agents in the agent-based model (ABM).
There are also ABMs that have exclusively been made about crowd
dynamics in the context of RTS environments, such as in [1]. In
these models, because the emphasis is on the crowd behavior, it is
each member of the crowd which mainly constitutes the agents of
the ABM, so the trains need not be directly modeled. Using ABMs
for these contexts is desirable because the behavior of crowds are
recognized to be caused by the interaction of its independent pedes-
trians and their surrounding environment, making it a complex
system [20]. Finally, there are models that incorporate both train
agents with commuter agents, such as in [22]. In the studies where
passenger dynamics are modeled alongside train movement, the
incorporation of passenger crowd dynamics is limited and often use
more analytical methods as opposed to agent-based means. Hence,
it is imperative that an ABM intent on capturing emergent behavior
from such RTS network should simultaneously consider the facts
that (a) the trains, with their collective behavior within an RTS,
are complex systems [13], and that (b) the passengers, with their
collective behavior within an RTS, are also complex systems [20].

[17] developed an ABM of the transportation networks specific
to their region as it was noted that current models were not suit-
able for their place. In a similar vein, [19] posed that it should be
possible to adapt the methods used in the construction of their
Singaporean RTS model to other RTS deployments in other cities
provided that necessary data, such as that of infrastructure and
travel demands, are available. Hence, it follows that it is admissible
to adapt the approaches used in other transportation contexts to
local conditions because of the presence of characteristics that are
unique to a region, such as unorganized road behavior [17], or the
penultimate station effect [19]. In the case of the National Capital
Region (NCR) in the Philippines, also known as Metro Manila, it is
natural to develop an ABM that integrates train operations with
passenger crowd dynamics to capture emergent behavior that could
only arise from attributes and qualities specific to the train system
networks in the metropolis. Having said these, in order to faithfully
capture the emergent behavior affecting the local RTS, both the be-
havior of the trains and the dynamics of the passengers as a crowd
should simultaneously be modeled, while taking local factors into
consideration, to investigate how train movement and passenger
crowd dynamics affect the efficiency of the RTS networks in Metro
Manila.

2 RELATED AGENT-BASED MODELS OF
TRAIN SYSTEMS

The discussion on the agent-based models of rapid transit systems
deemedmost related to this workwere classified into four parts. The
first part covers general agent-based approaches in transportation
studies that do not neatly fit into the succeeding categories. The
second part covers transportation studies in which trains are the
primary agents present in the model, without any presence of

passenger crowds. The third part covers transportation studies
which include the presence of crowds and their dynamics (e.g.,
movement) in the model, but excludes direct representation of
trains. Finally, the fourth part covers transportation studies which
integrate both train and crowd agents in themodel. Special attention
to these papers were given, as the integration of both such agents
in line with the goals of this research.

2.1 General Applications in Train System
Modeling

[13] described a plan for the simulation of the Netherlands Rail-
ways with the intention of finding links between travel supply and
demand by evaluating the effects of pricing strategies on passenger
behavior and on the financial and operational aspects of the overall
network. [13] argued for the need to build a simulation model for
capturing the complex dynamics of railway networks with passen-
gers because of the coupled nature of the system components and
the nonlinearity of its performance metrics.

[17] argued that several existing transportation models are not
suitable for developing countries because their transportation net-
works are not always organized. In view of such argument, [17]
introduced an ABM for transportation network simulation incor-
porating unorganized traffic behavior, using the road networks of
the city of Hanoi in Vietnam as a case study. The organization of
the road network is based on Geographic Information System (GIS)
data, as with the work by [5].

2.2 Models Solely of Train Operations
The studies wherein the models utilize train agents without pas-
senger components tend to focus on freight transport. For instance,
[7] presented a simulation to model the flow of intermodal termi-
nal units (ITU) between terminals to simulate the integration of
rail-based and road-based transportation of cargo. Train agents
represent the rail-based vehicles, while truck agents represent the
road-based vehicles. Train terminals, which serve as the liaison
between the train and truck vehicles, were also modeled as agents.
The agent-based model was made in the form of a discrete event
simulation (DES) model using MODSIM III, a simulation software.

Likewise, [5] presented an ABM to evaluate the profitability of
transshipment technologies from the perspective of rail freight
companies. The model, similar to that of [7], also simulates the
movement of cargo trailers between multiple destinations using
train agents, among others. The train agents were assigned param-
eters governing their behavior, such as the cargo capacity of each
agent. In validating the model, the real-world schedules of the trains
were implemented and simulated.

2.3 Models of Crowds in a Transportation
Context

[20] proposed a hierarchical approach to the simulation of crowds
and their dynamics by integrating factors such as agent perception
and cognitive control to reproduce self-emergent phenomena ob-
served in real life. As a case study, [20] modeled and analyzed the
entrance of the Xi’an railway station in China using the ABM.

Likewise, [1] focused on illustrating and developing agent-based
passenger motion and behavior model for applications in public
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transport. The model was designed to fit the needs of public trans-
portation instead of the more general pedestrian models in other
studies. [1] noted that crowd simulation may be done in two differ-
ent ways: through macro models, which represent the crowd as a
malleable mass with fluid-like behavior; or through micro models,
which try to individually capture the movement of each member
in the crowd, relying on emergent crowd behavior. Emergent be-
havior such as the formation of lanes (similar to the observation of
[20]) and the asymmetric formation of crowds on bus doors were
observed. [4] built an ABM that incorporates group cohesion forces
to crowd egress scenarios in movement-restricted public spaces to
observe whether groups within the crowd have an overall effect in
the crowd’s movement.

Meanwhile, [25] predicted the effects of train station closures of
the Beijing rail transit system in China on commuter decisions (at
the microscopic level) as well as travel demand (at the macroscopic
level). [25] recognized two methods in predicting passenger behav-
ior: the data-driven approach, wherein recognition and prediction
of patterns of passenger behavior are based on existing data; and
the model-driven approach, wherein a qualitative analysis incorpo-
rating passenger behavior are built and validated against available
real-world data. In the case of [25], a combination of smart card
data and passenger surveys were used to validate the models.

Finally, [21] developed an agent-based crowd dynamics model of
commuters in one of the high-volume terminal stations of the MRT-
3 line in Metro Manila in the Philippines. The model was made with
the intention of discovering emergent behavior in crowd formation
in order to assess infrastructure preparedness. [21] noted that the
physical layout of the station, along with how the passengers within
it behave, contribute to the congestion of the station. However,
[21] noted that the model does not consider the heterogeneity of
passenger attributes and behavior which may be factors that affect
crowd dynamics.

2.4 Integrated Models of Train Operations and
Crowd Dynamics

The work by [11] deals with the structural aspects of modeling
of interactions between mobile entities (e.g., vehicles, passengers)
in ABMs of transportation terminals. Their study proposes a dedi-
cated managing agent responsible for the handling the interactions
between mobile agents in the simulation. The train agents, which
move on line-based infrastructure, are controlled by managing
agents as non-intelligent simple entities.

In an extension of the work by [12], [19] integrated a full-scale
(composing of all seven operational lines at that time, as opposed to
only of a single train line) ABM of Singapore’s RTS with mathemat-
ical models of route choice and information from smart card data
to provide a more comprehensive understanding of crowd dynam-
ics as opposed to analytical models. The model also incorporates
station-specific walk times measured from field visits, as it was rec-
ognized that travel times include a walking component. Using the
developed simulation, population scaling scenarios in Singapore
were performed, and it was observed that there was a tipping point
with regard to the population with respect to the capacity of the
RTS wherein the quality of service significantly degrades after that
point is passed.

The research by [2] aims to eliminate delays in passenger reac-
tions when waiting in bus rapid transit (BRT) stations by designing
an improved passenger information system (PIS). This was facil-
itated by the creation of an ABM of a BRT station in the city of
Brisbane in Australia. Its input parameters were calibrated using
smart card data, field measurements, and video recordings (similar
to what was done by [21]). An ABM was built using AnyLogic to
describe bus arrivals and departures, as well as detailed passenger
movement.

An ABM for the Philippine MRT-3 train line was developed by
[22] using the NetLogo ABM environment. Like in the study by
[12], and complementary to the crowd-focused study by [21], three
agents were identified: train, commuter, and station agents. The
modeled infrastructure contains a depot where trains spawn, as
is in the real world. The model allows the user to run multiple
operational scenarios.

Lastly, [14] presented an ABM of a passenger rail system using an
activity-based simulation approach to predict the impact of pricing
strategies. The population and temporal flexibility of the passenger
agents were set in accordance with a passenger survey dataset,
as with the previous work by [25]. The simulation was created in
MATSim, a framework for implementing agent-based transport
simulations, and was scaled down to 10% of the reference train
system.

3 METHODOLOGY
The processes of this study were divided into three phases:

(1) Design and development, concerned with the formulation and
creation of the pertinent systems and models,

(2) Validation and calibration, concerned with the comparison of
the model with empirical data to measure its fidelity to the
real-world systems, as well as the changes that are applied
to rectify perceived inaccuracies between simulation and
real-world behavior, and

(3) Experimentation and analysis, concerned with the execution
of the model on different scenarios and the investigation of
their results.

3.1 Design and Development
This phase may be further divided into three sub-phases: the devel-
opment of a simulation of the train operations, the development
of a crowd dynamics model, and the integration of the latter two
components. In the development, the Java programming language
was used, while the SQLite relational database management system
(RDBMS) was utilized for organizing the infrastructure data for the
train simulation. The outputs of this phase were the two systems as
described in Section 5; namely the train simulation, and the station
editor.

3.2 Validation and Calibration
Two classes of empirical data were prepared for use in the valida-
tion: the smart card trip data, and the video recordings of the train
stations. The smart card trip data contains turnstile tap-in and tap-
out data that were used to quantitatively validate the simulation
results, while the video recordings of the train stations were taken
by the researcher on-site in the important areas of some stations in
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one of the modeled RTS, namely, the LRT-2 line. These station video
data were used to qualitatively validate the simulation behavior,
specifically those of the passenger crowds. As for the quantitative
validation, the model was run, with its results compared with those
of the empirical data. Using the results acquired in a round of simu-
lation, the model was then revised to address perceived issues and
inaccuracies. It should be noted that the results of the quantitative
validation were also analyzed in the succeeding phase as described
in the next section. That is, the act of validating the model quanti-
tatively already doubles as an experimentation process. Hence, this
phase overlaps with the next one, and need not necessarily be seen
as distinct. See Section 6 for the specifics of this validation process.

3.3 Experimentation and Analysis
As mentioned previously, this phase overlaps with the previous one
in that an experimentation process was already performed when
validation was done. The results acquired from the simulation were
analyzed, and observations and trends were pointed out. See Section
6 for these analyses. The tools and frameworks used for the analyses
were Python with the NumPy, SciPy, and Dask libraries, pivot tables
using Microsoft Excel, and further statistical tests using MATLAB.
In addition to the analysis of the experimentation results resulting
from the validation processes, scenario tests were also performed,
and their results likewise analyzed. Section 7 describes these in
detail.

4 COMPONENTS OF THE MODEL
In agent-based modeling, a system is modeled in terms of au-
tonomous decision-making entities called agents, the environment
these agents are on, and the interactions within and between such
components. Following from this, the discussion of each component
of the developed ABM of the RTS in this research is divided into the
two such categories. Moreover, the ABM developed for this work
is hereafter referred to as the train simulation.

4.1 Agents
The two salient agents in the train simulation are the train agents,
and the passenger agents. The design and behavior of both are
discussed below.

4.1.1 Train Agent. In RTS, trains are the vehicles which carry
passengers between stations. Trains spawn and despawn at a depot
(further described in Section 4.2.1). Trains move along tracks and
stop regularly at stations to allow passengers to board and alight it.
Each train maintains a station queue containing the stations where
it should stop in order. Once a train exhausts all the stations in its
station queue, this queue is replenished, but in reverse, signifying
that the train should now go in the other direction. The trains use
the Dijkstra’s algorithm to find the shortest path to its next station.
A flowchart detailing the general operations of train agents is shown
in Figure 2. Each train is composed of multiple carriages. Each
carriage has a set passenger capacity. The locations of passengers
are not modeled inside of the train carriages.

4.1.2 Passenger Agent. Passengers agents use the train system and
ride its trains in order to get to a destination station from a station of

Figure 2: A flowchart showing the general operations of
train agents in the train simulation.

origin. A flowchart detailing the general operations of train agents
is shown in Figure 3.

Figure 3: A flowchart detailing the general decision-making
processes of passenger agents in the train simulation.

Three status variables generally describe the cognition of each
passenger agent, in order of decreasing granularity:

(1) The disposition, representing whether the passenger is going
to ride a train, riding a train, or going to exit a station,

(2) The state, signifying the general location of the passenger
with respect to the type of its goal (or lack thereof), and

(3) The action, denoting the specific activity of the passenger.
Likewise, three variables primarily constitute the spatial param-

eters of a passenger agent in most cases:
• The position, denoting the two-dimensional coordinates of
the passenger agent on the environment it is on,
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• The heading, denoting the direction the passenger agent is
facing, and

• Thewalking speed, denoting the distance the passenger agent
walks per simulation tick.

At the microscopic level, the movement of a passenger agent
when walking freely in the train simulation is governed by behav-
iors based on those defined in the social force model for pedestrian
movement by [8] (Figure 4). These behaviors are:

(1) That the social force must describe an acceleration towards
the desired velocity of motion,

(2) That the social force must observe that distance from other
pedestrians and borders in the environment are maintained,
and

(3) That the social force must model attractive effects by other
pedestrians or objects.

When queueing for a certain goal (e.g., a ticket booth), the move-
ment of a passenger is also influenced by static floor fields prede-
fined in the environment that lead to such goal. Static floor fields
are elaborated further in Section 4.2.2.

Figure 4: An illustration of howpassenger agents in the train
simulation move based on behaviors laid out in the social
force model by [8]. In the figure, the desired movement vec-
tor of the orange passenger agent (represented by ®𝐹𝑎) is af-
fected by repulsive forces from an obstacle in gray and the
other passenger agents in gold (represented by ®𝐹𝑟0 , ®𝐹

𝑟
1 , and

®𝐹𝑟2 ). The resultant motivational vector of the passenger is
represented by ®𝐹 𝑓 = ®𝐹𝑎 + ∑𝑛−1

𝑘=0
®𝐹𝑟
𝑘
, where 𝑛 is the number

of repulsive forces (in this case, 3).

Each passenger agent may hold two types of tickets: a single
journey (SJ) ticket, or a stored value (SV) ticket. SJ tickets are cards
which are issued to passengers at their origin station, then returned
by the passengers at their exit station. On the other hand, SV tickets
are cards which passengers may keep with them even after exiting
the RTS. The type of ticket the passenger agent holds also deter-
mines the cognition of the passenger agent. Specifically, in the train
simulation, SJ holders are assumed to be passengers who are new
to the system, and hence unfamiliar with the environment of the
train stations. Given this, when SJ holders encounter obstacles they
get stuck on, they will find a path around it to free themselves. In

contrast, SV holders are assumed to be regular commuters, and
hence, are more familiar with the station environments. Therefore,
SV holders perform pathfinding beforehand. In short, when speak-
ing of how passenger agents generally avoid obstacles, SJ holders
are reactive, while SV holders are proactive. It should be noted that
such pathfinding processes are necessary in addition to the applica-
tion of the social force behaviors as mentioned above as their sole
use do not guarantee that a passenger agent will get past a set of
obstacles. The A* search algorithm is used for the pathfinding of
the passenger agents.

Aside from the attributes mentioned above, each passenger agent
also possesses other properties such as the gender of the passenger,
as well as the demographics it belongs to. The gender of the pas-
senger is considered in certain gender-restrictive facilities in the
Metro Manila RTS, such as in female-only train carriages. The latter,
meanwhile, determines the walking speed of the passenger, using
data from the Philippine demographics in [10] combined with the
study on walking speed measurements per demographic in [23].

4.2 Environments
The environments in the train simulation may be classified into
the train line infrastructure, which is an environment solely used
by the train agents, and the train station, which are used both by
passenger and train agents.

4.2.1 Train Line Infrastructure. In the train simulation, the train
line infrastructure is a network of train tracks that constitute the
mainline and the depot of an RTS. The mainline is made up of the
train tracks that connect the train stations of the RTS, representing
the tracks used primarily for passenger operations. Meanwhile, the
depot consists of the actual structure where trains enter and exit
the system, as well as the spur train tracks which connect such
structure to the mainline. In this train simulation, the internal track
network of the depots are abstracted.

4.2.2 Train Station. Stations are structures in a train line where
trains regularly stop to load and unload passengers. Each train
station in the train simulation may be composed of one or more
floors. Each floor is represented as a grid of square floor units called
patches. A patch is the basic unit of the station floor environment.
Each patch has an area of 0.6𝑚2, based on the approximate area
occupied by an average Filipino in the measurements by [18].

Aside from examining stations in terms of their structure, the
parts of a station environment may also be classified according to
their utility to the passengers. For instance, the part of a station
which accepts passengers from entrances and which contains the
ticket booths is called the concourse of the station, while the parts
of the station which allow passengers to wait for, board, or alight
trains at the side of the tracks are called platforms. Each of these two
parts are characterized by the presence of certain amenities, which
are objects in the train station which perform certain functions and
services for the passengers. Table 1 lists all possible amenities that
may be added in a train station in the train simulation.

Static floor fields are used to facilitate passenger movement when
queueing for a certain goal. Each goal that supports queueing, called
a queueable, maintains a list of patches associated with its static
floor field. Each of the patch in this list is associated with a value
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Table 1: The amenities thatmay be added in a train station in
the train simulation. Amenities with asterisks are required
in all train stations, while the rest are optional.

Amenity Description

Station entrance/exit* The entry and/or exit points of the
station, where passengers spawn or
despawn.

Security* Where passengers are checked by secu-
rity personnel before entering the con-
course.

Ticket booth* Machines where train tickets are dis-
pensed.

Turnstile* Facilitates the use of tickets for passen-
gers to be allowed access to the plat-
forms.

Train boarding area* Markings on the platforms where the
train doors should align, designating
where passengers should wait.

Stairs Vertical walkways composed of steps
which allow passengers to go to another
floor.

Escalator A moving staircase which carries pas-
sengers to another floor.

Elevator A machine that vertically transports pas-
sengers from one floor to another.

Obstacles Objects on the station which serve as
boundaries, barriers, or demarcations
for passengers.

of the range (0.0, 1.0]. These values denote the likelihood of the
passenger agents in selecting the patch in question when queueing
for the goal. Intuitively, floor fields represent a heat map of the
queue that forms for a specific goal. The use of static floor fields in
this work is similar to that of [21].

5 SYSTEM DESIGN
Two systems were developed for this research: the train simulation,
which ismost related to themain output of this study, and the station
editor, which is a companion system for the train simulation.

5.1 Train Simulation
The train simulation is the primary system developed for this re-
search to be used in running experiments. It consists of a simulation
of a single RTS with all its stations and the tracks connecting them,
with their distances to scale, in accordance with the real-world mea-
surements of the line. The train simulation derives its data from
three external data sources:

• The infrastructure data, contained in a relational database,
which contains the necessary dimensions of the train line
infrastructures as well as the rolling stock (train fleet) data
and their parameters,

• The station spatial layout data, contained in .stn binary files,
containing the actual spatial layout of the stations with all
its floors and the amenities contained therein, and

Table 2: The output logs maintained and saved by the train
simulation.

Type Description Updated Every

Passenger log Contains all completed
passenger trips and re-
lated data.

Every time a pas-
senger despawns
from the model
after completing
its trip.

Station log Contains station-related
parameters at the current
simulation state

Every oneminute
since the simula-
tion started.

Train log Contains train-related
parameters at the current
simulation state.

Every time the
train leaves a sta-
tion.

• The smart card data, contained in a .csv file, containing real-
world smart card trips to be used in generating passenger
agents in the train simulation.

For purposes of optimization, when the train simulation is run,
each of the train stations are executed in parallel with each other,
as the passenger agents and their dynamics within each station
have no influence whatsoever on the other stations. Similarly, each
floor within a train station may also be simulated in parallel with
each other, as passenger agents who are within each floor do not
affect the ones at the other floors.

The results of each round of simulation are stored in .csv log
files. Table 2 describes each output log maintained and produced
by the simulation.

5.2 Station Editor
The station editor is a companion system developed alongside the
train simulation. It serves two purposes: to draw and validate the
layouts of each train station to be used by the train simulation
(which the station editor saves in a .stn binary file), and to serve
as a smaller-scale ABM only for passenger crowd dynamics in a
single train station.

6 VALIDATION AND ANALYSIS OF THE
MODEL

Validation is the process of ensuring that there is a correspondence
between the implemented model and its subject [24]. The validation
of the train simulator was divided into two components: qualitative
validation, which visually validates the movement of the passenger
crowd using the station video recordings, and quantitative vali-
dation, which validates the simulation through comparison of its
results against the smart card data.

6.1 Face Validation of Crowd Dynamics
The following behaviors were sought in the developed ABM, based
on behaviors suggested by [16] to be observed when validating the
crowd dynamics of agent-based models:

(1) Corner hugging, described as when pedestrians slow down
and "wrap around" corners,
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(2) Lane formation, described as when pedestrians who move in
two opposite directions self-organize to form a lane for each
direction, and

(3) Counterflow behavior, described as when pedestrians coming
in from different directions self-organize to avoid each other.
This is similar to lane formation, but is more complex as
passengers come in from multiple directions.

All these three behaviors were observed at all locations in all
the simulated stations which were chosen to be observed. Figure
5 shows examples of these three key behaviors as observed in the
ABM. In the first image from the left, passengers leaving the sta-
tion are observed rounding the corner tight. In the second image,
passengers of opposing directions self-organize their own lanes
(lane formation), in order to avoid each other. In the last image,
the passengers seen are from four different origins, yet still orga-
nize directions which are seen to avoid each other (counterflow
behavior).

Figure 5: The three behaviors suggested by [16] to be ob-
served when validating crowd dynamics models as seen in
the train simulation. From left to right: corner hugging, lane
formation, and counterflow behavior.

Aside from these, the behaviors of queueing at the concourses as
well as most platform behaviors seen in the video recordings were
also seen in the model. However, certain behaviors such as cohesion
due to groups between passengers, moving closer to the train even
before the train stops at the platform, expediting when the train
doors are about to close, and a general sense of foresight when
avoiding obstacles were not seen in the simulation, despite being
observed in the video recordings. Moreover, some behaviors, such as
the formation of wave-like hordes when exiting crowded staircases,
and spending a prolonged amount of time being stuck on obstacles
were only seen in the simulation, and not in the recordings.

6.2 Validation of the Model Against Smart Card
Data

To measure how faithful the simulation results are to their real-
world subjects, and can therefore produce credible results when
doing experiments with them, smart card data was used as a refer-
ence to quantitatively measure the results of the train simulation.
Each of the three integrated train system models was executed
based on granular smart card data of trips on the 28th of January
in the year 2019. Noting that each row of granular data represents

Table 3: The parameters for the simulation of the LRT-1,
LRT-2, and MRT-3 train lines. These parameters were taken
from social media announcements of the respective oper-
ators of each RTS closest to the simulated date of January
28th, 2019.

Train
System

First
Trip

Interval
(min)

# of Trains
to Deploy

Speed
(km/h)

Carriage
classes

LRT-1 4:30 AM 6 16 40 3G, 2G
LRT-2 5:00 AM 10 5 60 1G
MRT-3 5:00 AM 7 15 30 1G, 2G

a completed (tapped in, then out of a turnstile) trip from a passen-
ger’s origin to its destination station, the same rows were fed into
each integrated train model. The differences in the real-world travel
times (the time taken between tapping in and tapping out) and the
predicted travel times by the simulation for the trips represented
by such rows were then noted. For each RTS model (namely the
LRT-1, LRT-2, and MRT-3), the simulation was run from 4:00 to 9:00
AM with the parameters as listed in Table 3.

6.2.1 First Round of Simulations (Iteration 1). The LRT-1 simula-
tion has not been able to complete the entire 5 hour simulation
from 4:00 to 9:00 AM as the memory requirements of the simulation
exceeded those of the machine the simulator is running on. Hence,
the simulation of the LRT-1 are limited to until 5:45 AM, which is
around the time when the simulator halts due to the lack of memory.
While the empirical data contained 19,411 rows of trip information,
the simulation was only able to successfully track the completed
trips of 2,918 passengers (15% of the empirical trips). Upon investi-
gation, the uncompleted trips were caused either by (a) a passenger
being in an unrecoverable inconsistent state within the station, and
hence unable to complete its trip, or (b) a passenger being unable
to be tracked by the passenger tracker due to concurrency and
memory issues.

As for the LRT-2 model, 54,564 rows of the empirical trip data
were used to spawn the passengers at the required time. The simu-
lation was able to successfully track the completed trips of 30,002
passengers (55% of the empirical trips). As for the low trip comple-
tion rate, reasons similar to those seen in the LRT-1 model were
identified.

Finally, for the MRT-3 model, 74,444 rows of the empirical trip
data were used for passenger generation, The simulation was able
to successfully track the completed trips of 26,955 passengers (36%
of the empirical trips). As for the low trip completion rate, reasons
similar to those seen in the LRT-1 and LRT-2 models were identified.

Summaries of the results after the first round of simulations of
the LRT-1, LRT-2, and MRT-3 models are seen in Table 4.

6.2.2 Fixing the Station Entrance Backlogs Issue (Iteration 2). Inves-
tigations were made to further determine why a large portion of
the passenger trips were not completed in the previous iteration,
especially in the cases of the LRT-2 and the MRT-3. After also re-
solving the issue of passenger tracking, it was discovered that an
unusually large volume of passengers were queueing outside the
station gates. It was determined that the queues of the passengers to
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Table 4: A summary of the statistics of each RTS model after the first iteration of validation, based on the differences between
the simulation and the empirical travel times. A positive mean or median signifies an underestimation of real-world times
by the simulation, while a negative mean or median denotes an overestimation of such times on the part of the model. The
asterisk indicates that the LRT-1 model did not complete the validation process over the prescribed times of 4:00 to 9:00 AM.

Train System Mean (s) Standard deviation (s) Median (s) RMSE NRMSE

LRT-1* 200.47 460.15 61.14 501.93 15.78%
LRT-2 99.94 142.65 91.06 174.18 20.10%
MRT-3 -469.66 397.69 -332.91 615.42 76.00%

Table 5: A summary of the statistics of each RTS model after the second iteration of validation, based on the differences
between the simulation and the empirical travel times. A positive mean or median signifies an underestimation of real-world
times by the simulation, while a negative mean or median denotes an overestimation of such times on the part of the model.
The asterisk indicates that the LRT-1 model did not complete the validation process over the prescribed times of 4:00 to 9:00
AM.

Train System Mean (s) Standard deviation (s) Median (s) RMSE NRMSE

LRT-1* 151.45 441.80 33.39 467.03 15.47%
LRT-2 -3.36 141.12 11.52 141.16 17.43%
MRT-3 -384.30 319.11 -290.83 499.52 35.16%

Table 6: A summary of the statistics of each RTSmodel after the third iteration of validation, based on the differences between
the simulation and the empirical travel times. A positive mean or median signifies an underestimation of real-world times
by the simulation, while a negative mean or median denotes an overestimation of such times on the part of the model. The
asterisk indicates that the LRT-1 model did not complete the validation process over the prescribed times of 4:00 to 9:00 AM.

Train System Mean (s) Standard deviation (s) Median (s) RMSE NRMSE

LRT-1* 171.97 605.06 -15.87 629.02 17.51%
LRT-2 -57.43 149.61 -47.34 160.26 19.78%
MRT-3 -434.40 340.95 -342.50 552.22 33.84%

some station’s security gates blocked the station entrances, and that
these queues were not observed to dissipate or resolve themselves
over time. Figure 6 shows an example of this clogging phenomenon.
Such issues were mostly resolved through making station layout
adjustments.

After fixing the entrance backlogs issues as described previously,
the models were run once again, yielding the updated statistics as
shown in Table 5.

When comparing against the original versions of the models,
all models of each train system in this iteration recorded improve-
ments in terms of the root mean squared error (RMSE) metrics.
Furthermore, with regard to the entrance backlogs issue discovered
in the previous iteration, all models in this iteration saw a decline
in the volume of entrance backlogs. However, the LRT-1 was still
only able to run until 5:45 AM.

6.2.3 Changing How Trains Wait at Platforms (Iteration 3). Since
the first version of the model, the trains spend a fixed time of 30 sec-
onds in each platform to allow passengers to board and alight. The
resulting models only represent a one-way integration of crowd
behavior and train operations, where the latter influences the for-
mer. With the goal of two-way integration of crowd behavior and

Figure 6: Passengers queueing for the security gates were ob-
served to block the station entrances in some stations, caus-
ing an unusually high volume of passengers queueing out-
side.

train operations in mind, amendments were made to ensure that
the behavior of the trains are also affected by the passenger crowds.
In the third iteration, the train stops at the platform for a minimum
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Table 7: The mean, standard deviation, and median travel times (in minutes) that result when the LRT-2 simulation is run
with the specified number of trains deployed.

Number of trains deployed
1 2 3 4 5 6 7 8

Mean travel time (min) 49.61 35.17 26.93 19.74 18.49 17.68 16.96 16.16
Standard deviation (min) 28.90 18.79 13.65 7.87 7.59 7.50 7.46 7.16
Median travel time (min) 43.92 32.38 24.58 19.03 17.83 16.97 16.22 15.47

of 11 seconds and a maximum of 30 seconds, determined by obser-
vations on the station video feed where minimum and maximum
waiting times of 11.14 and 30.3 seconds were observed respectively.
The waiting time of the train is modeled using a linear function
𝑤 (𝑛𝑝 ) as described below, where 𝑛𝑝 is the number of passengers
waiting at the platform where the train arrived:

𝑤 (𝑛𝑝 ) =
{
0.03832 · 𝑛𝑝 + 11.14 𝑛𝑝 ≤ 500
30.3 𝑛𝑝 > 500

The rounded value of𝑤 (𝑛𝑝 ) gives the waiting time of the train
for its current platform in seconds. This waiting time shall be pegged
to 30 seconds if there are more than 500 passengers waiting for the
train at the platform.

Summaries of the results after the third round of simulations of
the LRT-1, LRT-2, and MRT-3 models are seen in Table 6.

6.2.4 Summary of the Simulation Results Through All Iterations.
Using the normalized root mean squared error (NRMSE) metric to
compare the results of the latest iteration (Iteration 3) of each train
system model with each other, it is noted that the LRT-1 model has
the lowest value of such metric at 17.51%, followed by the LRT-2
model at 19.78%, and then the MRT-3 model at 33.84%. However, the
fact that the LRT-1 validation was not able to be completed in the
same time period as the other ABMs is once again raised, and that
validation of equal rigor to the other models is urged in order to gain
more confidence on the results of the LRT-1 simulation. Having said
this, among the models which were able to complete the necessary
time period of 4:00 to 9:00 AM, the LRT-2 model had the better
NRMSE of 19.78%. The same model has also seen the best mean
travel time difference at just under one minute of overestimation (-
57.43 seconds). Hence, the model which best captures its respective
train system with reasonable confidence was determined to be the
LRT-2 simulation.

It should be noted that for the LRT-2, a worse RMSE was actually
yielded by the third iteration. This signifies that the estimations of
the train platform waiting time by 𝑤 (𝑛𝑝 ) are far from the actual
waiting times taken by the trains in real-world scenarios. This
means that𝑤 (𝑛𝑝 ) should be refined in future works. Nevertheless,
this general behavior of the trains stopping longer for a larger
volume of passengers waiting at the platform is desired, and hence
should be maintained.

7 SCENARIO TESTING
Having been determined that the LRT-2 model captures its real-
world train system the best, two hypothetical scenarios were then
tested with the said model. The first scenario inspected how the

passenger travel times change when more or less are deployed
in the system. The least number of trains deployed that does not
considerably worsen passenger journey times were then sought.
Meanwhile, the second scenario analyzed how an increase in rider-
ship brought about by population growth affects the operations of
the LRT-2.

7.1 Changing the Number of Trains Deployed
The simulation was run with the same parameters as listed in
Table 3, but with different numbers of trains deployed. Specifically,
scenarios were run to see the consequences when 1, 2, 3, 4, 6, 7, and
8 trains (as opposed to just the standard 5 trains) were deployed.
Table 7 shows the comparison of the mean travel times in the
train system simulation given the amount of trains deployed, along
with other metrics. In Figure 7, a graph of the average and median
passenger travel time compared to the number of trains deployed
in the simulation.

Figure 7: The average and median time spent by the pas-
sengers in the LRT-2 across different numbers of trains de-
ployed. The green line indicates the standard number of
trains deployed by the LRT-2 under normal operations (5
trains), while the red line indicates the number of deployed
trains (4 trains) belowwhich travel timemetrics increase sig-
nificantly.

Given these observations, it is concluded that while any change
in the number of trains deployed will lead to a statistically sig-
nificant change in the average travel time (as per the Wilcoxon
rank sum test), deploying less than four trains will result in large
increases in the passenger travel time, relative to what the changes
in travel time would have been when deploying four or more trains.
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Table 8: The projected LRT-2 ridership from 4:00 to 9:00 AM
for a given year ahead of 2019 using the mentioned popu-
lation growth rate of 1.63%. For each year projected ahead,
a value of 1.63% of the previous year’s trip counts is added
back to that previous year’s count. The first row (Year 0) con-
tains the empirical smart card trip count from the year 2019,
while the rest of the years contain projected counts.

Years projected
ahead

Year Projected trips from 4
to 9 AM

0 2019 54,564
1 2020 55,453
2 2021 56,357
3 2022 57,276
4 2023 58,210

More passes, however, should be performed in future works once
more issues are resolved in order to garner more confidence in the
results.

7.2 Population Scaling
According to the most recent census conducted in the Philippines
in 2020, the Philippine population increased by 8,053,906 from
100,981,437 in 2015, translating to an annual population growth rate
of 1.63% [15]. This growth rate shall be the basis of the population
scaling scenarios conducted for the LRT-2. In these scenarios, the
effects on the LRT-2 system of yearly increases in ridership volume,
based on the said growth rate figure, will be examined through the
train simulation. On January 28th in the year 2019, 54,564 trips were
recorded between 4:00 and 9:00 AM in the LRT-2, as taken from the
smart card data. Using the population growth rate figure along with
this 2019 trip count, the yearly scaling up of the passenger ridership
for the LRT-2 during the mentioned time period is projected from
the year 2019 until the year 2023. Table 8 shows the projected
ridership counts approximated until 2023 as computed using the
given population growth rate percentage.

For each of the four future years to consider, three passes of the
LRT-2 simulation will be executed with the same parameters as
mentioned in Table 3. For this scenario test, the passenger spawn
list is artificially scaled up from the January 28th, 2019 data to
match the current simulation year’s trip counts. In generating these
additional trips, it is ensured that the likelihood of the trips to be
generated will be based on empirical distributions.

Four metrics are of interest in the results for this scenario testing:
(1) The average travel time of the passenger, defined as the time

between tapping in at the entry station and tapping out at
the destination station,

(2) The average time spent in the train system by the passenger,
also referred to as the average time spent alive, is defined as
the time between spawning, possibly at the station entrance
backlogs, and despawning at the exits of the destination
station,

(3) The average load factors of the trains throughout the simula-
tion period, defined as the ratio of the number of passengers
riding the train and its actual capacity, and

(4) The average platform waiting time of the trains, which is how
long the trains stop at the platforms to allow passengers to
board and alight.

The first two metrics primarily deal with attributes relating to
passenger crowds, while the last two are of the trains. This allows
for the analysis of the effects of the behaviors of the trains on
the passenger crowds, and vice versa. Figures 8, 9, 10, and 11 show
scatter plots of these metrics aggregated across the three simulation
passes for each of the projected years from 2020 to 2023.

Figure 8: A scatter plot showing the simulated mean passen-
ger travel times from 2020 through 2023.

Figure 9: A scatter plot showing the simulated mean passen-
ger times spent in the train system from 2020 through 2023.

As seen in Figure 8, it was observed that as estimated ridership
increases through the years, increases in the mean travel times
were also noticed. From an average travel time of 18.49 minutes in
the 2019 simulation with around 54,000 passengers, it increased to
18.64 minutes in the 2023 projections with over 58,000 passengers,
representing a 0.78% increase. For the mean time spent alive seen
in Figure 9, increases were also observed as ridership scales up. In
the 2019 simulation, passengers spent an average of around 29.1
minutes in the simulation. In the 2023 projections, this increases to
over 29.73 minutes, representing a 2.16% increase. It can be surmised
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Figure 10: A scatter plot showing the simulated mean train
load factors from 2020 through 2023.

Figure 11: A scatter plot showing the simulated mean plat-
form waiting times of the trains from 2020 through 2023.

from these observations that increases in the LRT-2 ridership result
in slight increases in the travel times as well as the time spent by
the passengers in the system itself.

As for the metrics related to train operations, as observed in
Figure 10, the average load factor of the LRT-2 trains increases from
29.47% to 30.86% given the same increases in ridership, representing
a 4.7% increase. Finally, platform waiting times of the LRT-2 trains
(Figure 11) also saw increases in magnitude to 19.68 seconds, albeit
with a difference of just around one tenth of a second from the 2019
mean platform waiting time of 19.59 seconds, representing a 0.47%
increase. From these observations, it may be said that an increase
in LRT-2 ridership also affects train operations as described by the
previous metrics, but more so with the average load factors than
with the average platform waiting times.

As mentioned previously, more passes and projections into the
future should be performed in future works.

8 CONCLUSION
The train simulation was constructed with the comprehensive in-
tegration of both train operations and passenger crowd dynamics

in one model in mind. A detailed passenger movement framework
based on the seminal social force model by [8] was incorporated
into the passenger agent. To serve the twofold purposes of creating
spatial station environments for the train simulation and testing
how passenger crowds behave in such environments, the station
editor was developed as a companion to the train simulation model.

The train simulation was validated against empirical data taken
from real-world train systems. One of these empirical data were
smart card tap-in and tap-out data, used as a reference for the travel
times of the passengers in the developed model. The other class of
empirical data used were video recordings of the train stations, used
to qualitatively validate the movement of the passengers which
were otherwise not captured in the ticket data. The face validation
of the crowd dynamics showed that the relevant crowd simulation
components and frameworks of the ABM capture most behaviors
seen in the real-world. Meanwhile, quantitative validation was per-
formed on the train system models with the smart card data from
4:00 to 9:00 AM. After analyzing the validation results as well as
the output logs of the models, amendments were made to resolve
some discovered issues. After such encountered problems were
remedied, the models were revalidated in another iteration, and the
new results examined, then compared and contrasted with those
of the previous iteration. All in all, three iterations of resolutions
and improvements were made to the models, resulting in models
which captured train system dynamics better than the first itera-
tion. Metrics showed that the LRT-2 model captured its real-world
counterpart the best, relative to the other models.

Hypothetical scenarios were tested on the LRT-2 model. For
instance, a varying number of trains was deployed to see how it
would affect the passenger crowd volume. It was discovered that,
for the time period of 4:00 to 9:00 AM, having less than 4 trains
deployed results in a tipping point which represents a considerable
increase in passenger travel times. Another scenario examined how
increases in ridership with respect to the growth of the Philippine
population affect the operations of the LRT-2 for four years after the
empirical smart card data was recorded. Through simulations on
an artificially scaled up version of the empirical data taken in 2019,
projections were made for metrics which describe the performances
of train operations and passenger crowd dynamics in the LRT-2.
Increases of 0.78% in the mean passenger travel time, 2.16% in
the mean total time spent in the system, 4.7% in the mean train
load factor, and 0.47% in the time trains stop at the platforms were
projected between 2019 and 2023.

In both the validation and scenario testing phases, technical
limitations affected the rate at which the simulations were run
and prevented more passes and parameters sweeps from being
performed. In the case of the LRT-1 model, the simulation could
only be run until a certain time after which the simulation was
then seen to exhaust the requirements of the hardware which the
simulation runs on. Hence, it is imperative that more optimizations
and interventions be done on the developed models to resolve such
technical and logistical issues.

We were able to develop an ABM that simulates train operations
alongside passenger crowd dynamics simultaneously, and was able
to support an integrated simulation of both trains and crowds in the
context of MetroManila’s RTS infrastructure. However, refinements
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to the model are needed in order to better capture real-world dy-
namics, especially for the LRT-1 and MRT-3 systems. Furthermore,
due to such level of integration, performance optimizations have
to be done in order to make the simulation scale better for subjects
with larger scale requirements, such as in more comprehensive
urban scenarios with more complicated behaviors and phenomena.
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